Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 666-676, 2017.
Article in Chinese | WPRIM | ID: wpr-348232

ABSTRACT

Complement-C1q/tumor necrosis factor-related protein 3 (CTRP3) is an adipokine that primarily identified in 2003 and is an important member of CTRP family. CTRP3 is expressed in various tissues and cell types, and is highly conserved among different species. Multiple novel functions of CTRP3 have been reported recently as the further research on this protein develops. CTRP3 not only affects the proliferation of chondrocytes and the pathogenesis of osteoarthritis, but also regulates multiple physiological and pathological processes including the secretion of testosterone and adipokines, glucose and lipid metabolism, mitochondrial biogenesis, inflammatory response, cell apoptosis, angiogenesis, vascular calcification and ventricular remodeling. The present review mainly focuses on the research progresses on CTRP3, including its discovery, gene and protein structure, expression regulation, and biological functions. The progresses summarized may provide new clues for the further investigation of CTRP3.

2.
Journal of Experimental Hematology ; (6): 150-155, 2006.
Article in Chinese | WPRIM | ID: wpr-280713

ABSTRACT

In order to study the possibility of xenotransfusion from porcine red blood cell (pRBC) to primate, the antigens on pRBC surface were modified to make it more compatible to primate sera. Porcine RBCs were subjected to both enzymatic removal of membrane alpha-Gal antigens with recombinant alpha-galactosidase (AGL) and covalent attachment of succinimid propionate-linked methoxypolyethyleneglycol (mPEG-SPA) to camouflage non-alphaGal antigens. The effects of double modifications were determinated by hemagglutination and clinical cross-match testing with rhesus sera. In vivo clearance rates and safety of modified pRBCs were measured after it was transfused into Rhesus monkey with or without immunosuppressant treatment. The validity of pRBC was detected in exsanguine Rhesus monkey model. The results showed that AGL could effectively remove alpha-Gal xenoantigens on pRBC membrane and reduce hemagglutination. The combination of mPEG modification with AGL treatment could significantly increased compatibility between pRBCs and Rhesus monkey sera. Modified pRBCs were detectable in Rhesus monkey blood at 12 hours after transfusion, and their survival time was 40 hours in the immunosuppressant-treated Rhesus monkey. In vivo survival rates of pRBCs were 38% in exsanguine Rhesus monkey at 8 hours after transfusion, and during that time, the hemoglobin and hematocrit of Rhesus monkey were maintained at the same level as before it lost blood. It is concluded that the modified pRBC can be safely transfused into Rhesus monkey and relieve the anemic symptom exsanguine Rhesus monkey. It suggested that pRBC can be hopefully used as a blood substitute for primate and human in the future.


Subject(s)
Animals , Erythrocyte Transfusion , Methods , Erythrocytes , Allergy and Immunology , Hemagglutination Tests , Macaca mulatta , Allergy and Immunology , Polyethylene Glycols , Pharmacology , Swine , Blood , Transplantation, Heterologous , Methods , alpha-Galactosidase , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL